Wer von Euch legt Wert auf SACDs? Oder andere HiRes und Surround-Medien?

  • ist da nicht die hörgrenze das argument? ob das so hinhaut, bin ich auch nicht so überzeugt.


    Die Hörgrenze von ca. 20 kHz ist das Argument für die Wahl der Sampling-Frequenz von 44,1 kHz - nach dem Nyquist-Shannon-Theorem können bei einer Sampling-Frequenz von 2n Hz Signale bis zu einer Frequenz von n Hz wiedergegeben werden.


    https://de.wikipedia.org/wiki/Nyquist-Shannon-Abtasttheorem


    Der Artikel beinhaltet auch die m. E. wichtigen Sätze:


    Zitat

    Rekonstruieren ohne Informationsverlust bedeutet, dass die Lagrange-Interpolation, ausgeweitet auf den Fall mit unendlich vielen, regelmäßig angeordneten Stützstellen, wieder das Ausgangssignal ergibt. [ ... ]
    Man beachte, dass man mit diesen Formeln in der Mathematik zwar ausgezeichnet arbeiten kann, sie sich aber in realen Abtastsystemen so nicht realisieren lassen. Zur Bestimmung eines jeden Signalwertes wäre eine Summation über einen unendlichen Bereich notwendig. Außerdem müssten unendlich viele Takte abgewartet werden, bevor die Summation abgeschlossen werden kann. Weil das nicht möglich ist, entstehen in der Praxis unvermeidliche Fehler.

    (Hervorhebung von mir)


    Das ist eine viel bessere Formulierung als meine ungelenken Sätze. Im richtigen Leben stehen halt nicht unendlich viele Stützstellen (bzw. ein beliebig hoher Grad des zu fouriertransformierenden Polynoms) zur Verfügung, sondern nur so viele, wie die Abtastfrequenz vorgibt.


    Gruß
    MB


    :wink:

    "Den Geschmack kann man nicht am Mittelgut bilden, sondern nur am Allervorzüglichsten." - Johann Wolfgang von Goethe

  • ja, das ist sehr einleuchtend. dass man höhere frequenzen nicht hören kann, besagt ja nicht, dass die 44100 stützstellen die tieferen frequenzen, die wir hören können, genau genug abbilden. mich hat das immer irritiert - aber ich bin kein high-end-nerd.

    This play can only function if performed strictly as written and in accordance with its stage instructions, nothing added and nothing removed. (Samuel Beckett)
    playing in good Taste doth not confit of frequent Passages, but in expressing with Strength and Delicacy the Intention of the Composer (F. Geminiani)

  • Ich wollte mit meinem Beitrag für die Capriccio Mitglieder nur darauf hinweisen, dass die hörbare Qualität durch High Resolution nicht besser wird. Pure Einbildung, nichts mehr.

    Für mich ist das genau der Punkt. Es kann sehr gut sein, dass das Einbildung ist. Ich gehe auch davon aus, dass die Emotionen nicht auf der Aufnahme sind, sondern von uns Hörer dazu gepackt werden.


    ABER trotzdem kaufe ich mir wenn möglich HiRes Aufnahmen. Weil es sich für mich besser anfühlt. Und weil ich glaube, dass ich mehr höre. Also der emotionale Zugewinn einfach größer ist. Schließlich ist das ein Hobby, von daher steht für mich die Freude an der Sache absolut im Vordergrund. Weniger wichtig ist mir, ob man das luftige der HiRes Aufnahme wirklich hören kann oder ich es mir nur einbilde.


    Deswegen sehe auch ich persönlich für mich keinen Sinn in einem Blindtest, weil der ja die ganze emotionale Seite ausblenden. Lese aber gerne die verschiedenen Meinungen. :) von daher danke an alle für die interessanten Beiträge

    Viele Grüße, Michael

  • ABER trotzdem kaufe ich mir wenn möglich HiRes Aufnahmen. Weil es sich für mich besser anfühlt.

    Es wird kolportiert, dass die Anbieter unter "HiRes" eine höherwertige Abmischung verkaufen. Das wäre eine andere Erklärung für den hörbaren Unterschied.


    Um das zu unterscheiden, müsste man 192 kHz/24 Bit-Aufnahmen selbst auf CD-Qualität runterrechnen und dann bei absolut identischen Lautstärken vergleichen. Das Ganze im Doppelblindtest, also nicht so wie seinerzeit bei Herrn Tiefenbrunn.


    Gruß
    MB


    :wink:

    "Den Geschmack kann man nicht am Mittelgut bilden, sondern nur am Allervorzüglichsten." - Johann Wolfgang von Goethe

  • dass man höhere frequenzen nicht hören kann, besagt ja nicht, dass die 44100 stützstellen die tieferen frequenzen, die wir hören können, genau genug abbilden.

    genau, das ist irgendwie nicht logisch.

    aber ich bin kein high-end-nerd.

    ick ooch nich, deshalb sehe ich es in der Praxis wie said.

    Die englischen Stimmen ermuntern die Sinnen
    daß Alles für Freuden erwacht

  • Es wird kolportiert, dass die Anbieter unter "HiRes" eine höherwertige Abmischung verkaufen. Das wäre eine andere Erklärung für den hörbaren Unterschied.

    einleuchtend. ich gehe ja mal davon aus, daß die Unterschiede ("knarzende Fagotte"), die Du gehört hast, auch da waren... ;)

    Die englischen Stimmen ermuntern die Sinnen
    daß Alles für Freuden erwacht

  • Also der emotionale Zugewinn einfach größer ist. Schließlich ist das ein Hobby, von daher steht für mich die Freude an der Sache absolut im Vordergrund. Weniger wichtig ist mir, ob man das luftige der HiRes Aufnahme wirklich hören kann oder ich es mir nur einbilde.


    Deswegen sehe auch ich persönlich für mich keinen Sinn in einem Blindtest, weil der ja die ganze emotionale Seite ausblenden.

    Also dagegen ist ja auch absolut nichts einzuwenden. Hauptsache man hat Freude daran :)

  • Was aber, wenn das Ausgangssignal sich nicht hinreichend genau durch ein Polynom vom richtigen Grade (durch die Sampling-Frequenz vorgegeben) darstellen lässt? Dann kann die Fourier-Transformation eben nur von einer Approximation ausgehen - und auch nur die Approximation wieder herstellen. Oder?

    Das hat er aber auch schön im Video gezeigt.
    Eine "exakte" Rechteckfunktion braucht zur Rekonstruktion mit Sinuswellen theoretisch unendliche viele Teilwellen mit beliebig hohen Frequenzen.
    Wenn irgendwo auf dem Signalweg ein Tiefpass liegt, wird das Ganze bei irgendeiner Grenzfrequenz abgeschnitten und sieht dann nicht mehr perfekt aus, sondern ist nur eine Annäherung an die mathematische Rechteckfunktion.
    Das geschieht im A/D Wandler bei dessen Grenzfrequenz (z.B. 22.05 kHz).
    Das geschieht aber auch in unserem Ohr bei dessen Grenzfrequenz (die liegt bei den wenigsten über 20 kHz). (bei mir noch weiter unten :D )


    :wink:

  • Eine "exakte" Rechteckfunktion braucht zur Rekonstruktion mit Sinuswellen theoretisch unendliche viele Teilwellen mit beliebig hohen Frequenzen.

    Du sagst es ganz richtig. Es ist eben einfach theoretisch. Ein perfektes rechteckiges Signal existiert in der Natur gar nicht. Und das Ohr kann damit sowieso nichts anfangen.

  • mit dem Analogieschluss auf unser Ohr sollte man vorsichtig sein.
    Wenn jemand altersbedingt keine Frequenzen über, sagen wir mal, 10 kHz hört, heißt das nicht unbedingt, dass er nicht auf irgendwelche steilflankigen Signale genau so reagiert, als würde er noch bis mindestens 20 kHz etwas wahrnehmen.
    Es gibt keine wirklich zweifelsfrei aussagekräftige Tests dazu. Eine interessante Theorie besagt, das hochfrequente Geräusche zum Teil auch über die Kopfhaut wahrgenommen werden. Ich habe diese Theorie nicht weiter verfolgt, aber klar ist dass längst nicht alles verstanden ist, was mit unserer Hörfähigkeit zu tun hat.
    Evolutionsbiologisch gesehen war zeitlich präzises Hören mal eine lebensrettende Eigenschaft. Damit unmittelbar verbunden ist nämlich das Richtungshören. In der Horizontalen können wir ein Geräusch auf ca. 3 Grad genau orten. Es wäre mal spannend zu untersuchen, ob auch diese Fähigkeit im Alter nachlässt.


    Ich nehme übrigens regelmäßig Musik mit 96 kHz / 24 bit auf und rechne die Musik am Ende auf die CD-Auflösung herunter. Je nach Besetzung ist der Unterschied mal mehr, mal weniger deutlich zu hören.
    Die CD-Auflösung wurde vor ca 40 Jahren so festgelegt, nicht weil eine höhere Auflösung keinen Sinn hätte, sondern weil es damals das technisch maximal machbare war.

  • Was aber, wenn das Ausgangssignal sich nicht hinreichend genau durch ein Polynom vom richtigen Grade (durch die Sampling-Frequenz vorgegeben) darstellen lässt? Dann kann die Fourier-Transformation eben nur von einer Approximation ausgehen - und auch nur die Approximation wieder herstellen. Oder?

    Das hat er aber auch schön im Video gezeigt.
    Eine "exakte" Rechteckfunktion braucht zur Rekonstruktion mit Sinuswellen theoretisch unendliche viele Teilwellen mit beliebig hohen Frequenzen.
    Wenn irgendwo auf dem Signalweg ein Tiefpass liegt, wird das Ganze bei irgendeiner Grenzfrequenz abgeschnitten und sieht dann nicht mehr perfekt aus, sondern ist nur eine Annäherung an die mathematische Rechteckfunktion.
    Das geschieht im A/D Wandler bei dessen Grenzfrequenz (z.B. 22.05 kHz).
    Das geschieht aber auch in unserem Ohr bei dessen Grenzfrequenz (die liegt bei den wenigsten über 20 kHz). (bei mir noch weiter unten )


    Stimmt ... das bedeutet eben, dass Wellenformen, deren Fourier-Zerlegung höhere Frequenzen als die Sampling-Frequenz benötigt, schon vom Prinzip her nicht korrekt wiedergegeben werden können. Das bestreitet ja auch Herr Montgomery nicht. Zum Beispiel die gezeigten Rechteckwellen. Oder Sägezähne, Dreieckswellen usw.


    Es ist eben einfach theoretisch. Ein perfektes rechteckiges Signal existiert in der Natur gar nicht.

    Nun ja, es gibt es auch Computermusik. Kann CD-Qualität diese Musik angemessen wiedergeben?


    Mein Argument war ja weniger, dass nicht-differenzierbare Intensitätsverläufe nicht mit endlich vielen Summanden einer Fourier-Trafo wiedergegeben werden können (was offensichtlich ist), sondern eher, dass auch ein differenzierbarer und L2-integrierbarer Intensitätsverlauf durch ein Polynom vom Grade N in den meisten Fällen eben nur angenähert werden kann. Diese Annäherung gibt dann die Fourier-Trafo idealtypisch wieder, aber mehr auch nicht. Was weg ist, ist weg, und kann bei der D/A-Wandlung nicht wieder hervorgezaubert werden.


    Eine höhere Sampling-Frequenz ist theoretisch in der Lage, diese Verluste zu begrenzen.


    Aber ich komme nochmal auf das Filterthema zurück. Es ist leider mit heutigen Stand der Technik nicht möglich, den Filter mit einer Grenzfrequenz von ca. 20 kHz mit hinreichend steilen Flanken (man muss bis 22,1 kHz ja bei -96 dB sein) so zu bauen, dass keine Artefakte entstehen. Das heißt nicht, dass Nyquists Satz falsch wäre. Es heißt nur, dass es heute keine Filter gibt, die es uns erlauben würden, Nyquists Satz bis in seinen Grenzbereich auszuloten.


    Dazu dieses kleine Video:
    https://www.youtube.com/watch?v=geaoEt-9V-w


    Gruß
    MB


    :wink:

    "Den Geschmack kann man nicht am Mittelgut bilden, sondern nur am Allervorzüglichsten." - Johann Wolfgang von Goethe

  • Jetzt doch auch ich- nach langer Abwesenheit.
    Vor allem wegen meines Lachers, MBs mathematische Kompetenz zu bezweifeln.
    Hier mitzulesen , hat Spaß gemacht!


    Weil wohl weder Physik, noch Mathematik, noch Psychologie etc., getrennt voneinander, in der Lage sind, Musik zu erklären.
    Eigentlich jeder, der sich nicht seriös mit dem Thema beschäftigt, sollte nach MBs Erläuterungen das Weite suchen- zumindest einfach bleiben beim: "Ich hörs halt nicht".


    Rein praktisch kann ich nur Eigenes beitragen, wissenschaftlich hat MB sehr viel, wenn nicht alles gesagt.


    Seit nunmehr Jahrzehnten erarbeite ich Remasterings- und hatte das größte Vertrauen in das Hören meiner Freundin , die sehr schwerhörig ist, aber sehr genau HINHÖRT.
    Sie hört ein Dithering und die Unterschiede zwischen einer 16bit- und einer 24bit- Abtastung sehr genau. Viel genauer als ich selbst.
    Vielleicht vertraut sie ihrem Hörsinn einfach nicht in dem Maße wie 'wir' es tun und relativiert eher?


    Für sie galt stets: Musik soll mich erreichen.
    Das geht natürlich auch unabhängig von aller Wissenschaft. Interessant dabei: je höher Abtastraten etc., umso leichter fiel es ihr.
    Weniger 'Sand im Getriebe', das in der Hörphysiologie 'zurechtgerechnet' werden muss?


    Das umschreibt vielleicht das Wesen des HiRes am besten: die Musik wirkt unmittelbarer. Zumindest auf jemanden, den die Physik nicht interessiert und der /die das Gehör nicht als 'perfekten Sinn' betrachtet, eher als limitiert um die anderen zu öffnen.
    Neben aller Technik geschieht ja viel- und das will und soll den Hörer erreichen.


    Dabei sind bit- Tiefe und Abtastrate ein Vehikel. Über Phasenverschiebungen bei der Mikrophonierung etc., damit einhergehende Auslöschungen, möchte ich nicht anfangen zu reden.


    Mein Fazit dabei: je besser die Technik, um so weniger steht sie dem Hören im Wege.


    Wer glaubt, objektiv physikalisch zu hören, dem sei es unbenommen.

    "Ich mag verdammen, was du sagst, aber ich werde mein Leben dafür einsetzen, dass du es sagen darfst." Voltaire

  • Da hast Du, denke ich, etwas missverstanden? Was die Abtastrate vorgibt, ist hier irrelevant, vorausgesetzt sie ist mindestens doppelt so hoch, wie die größte im Signal vorhandene Frequenz. Der von Dir zitierte Abschnitt meint, dass das Zeitsignal unendlich in die Vergangenheit als auch in die Zukunft abgetastet werden muss, damit die mathematisch exakte Rekonstruktion gelingt. Hätte man z.B. eine reinen Sinus, dann dauert der mathematisch gesehen ja in alle Ewigkeit. Um in mathematisch zu rekonstruieren, muss er dann auch in alle Ewigkeit abgetastet werden. Aber einen reinen Sinus gibt es physikalisch nicht. Und überhaupt sind Musikstücke und die darin enthaltenen Töne von endlicher Dauer und müssen daher auch nicht "unendlich viele Takte" abgetastet werden für eine mathematisch exakte Rekonstruktion.


    Trotzdem halte ich den Hinweis für wichtig, dass es sich beim Nyquist-Theorem um einen mathematischen Satz handelt, der nicht unmittelbar auf die Technik angewendet werden kann. Die nur endliche Steilheit vorhandener Filter wurde schon angemerkt. Außerdem setzt das Nyquist-Theorem voraus, dass die Stützpunkte unendlich kurz sind und der Signalwert am Stützpunkt unendlich genau bekannt ist. In der Realität ist beides nicht der Fall.
    Nun kann man sagen, dass in guter Näherung und vor allem für das menschliche Gehör diese Abweichungen vom mathematischen Ideal vernachlässigbar sind. Man kann aber auch der Meinung sein, dass die Spezifikationen der CD in den 80ern etwas auf Kante genäht wurden, und man sich heute ruhig etwas mehr Abtastrate und Bittiefe gönnen kann. Technisch ist das null Problem und auch preislich kein Thema. Daher verstehe ich nicht, warum das Thema so erbittert diskutiert wird.
    Auf CD habe ich wunderbare Aufnahmen mit sehr guter Audioqualität, dennoch schätze ich SACDs. Erstens bieten sie Surround, zweitens werden sie bevorzugt von audiophilen Labels für eine audiophilen Kundschaft vertrieben. Dieser Umstand erhöht die Chance, dass sowohl die Aufnahmebedingungen top waren als auch das Mastering in Hinblick auf Wiedergabe auf einer Hifi-Anlage optimiert wurde und nicht fürs Autoradio oder gar Smartphone.


    MB hat völlig recht. Die Fouriertransformation ist keine Funktionenfamilie, sondern eine Abblidung von einem Funktionenraum in einen anderen.


    Hudebux

  • Da hast Du, denke ich, etwas missverstanden? Was die Abtastrate vorgibt, ist hier irrelevant, vorausgesetzt sie ist mindestens doppelt so hoch, wie die größte im Signal vorhandene Frequenz.

    Hmmm ... mir geht es darum, dass die diskrete Fourier-Trafo nur dann die Ausgangsfunktion perfekt wiedergibt, wenn sich diese durch ein Polynom beschreiben lässt, dessen Grad die Anzahl der Stützstellen nicht überschreitet. Das hat erst einmal nichts mit der Nyquist-Frequenz zu tun.


    Wenn ich ein Eingangssignal habe, welches nicht durch ein Polynom darstellbar ist (und das sind wohl die meisten, da es nur abzählbar viel rationale Polynome von endlichem Grad gibt), dann bietet die Rekonstruktion des Eingangssignals als Polynom von beschränktem Grad nur eine Annäherung, die um so besser sein kann, je höher der Grad des Polynoms ist. Perfekt wäre die Annäherung, wenn der Grad unendlich wäre, d. h. unendlich viele Stützstellen (in einem Intervall endlicher Länge).


    Ok, die Argumentation ist wohl, dass diejenigen Anteile, welche die Differenz von Polynom und Eingangssignal beschreiben, oberhalb der Nyquist-Frequenz liegen und daher irrelevant sind. Mag sein ...das wäre nochmal zu verifizieren.


    Danke auch für den Hinweis, dass der Punkt-Charakter der Stützstellen und die Exaktheit der Messwerte natürlich ebenfalls nicht gegeben sein kann! Spätestens Heisenberg setzt die Grenze.


    Gruß
    MB


    :wink:

    "Den Geschmack kann man nicht am Mittelgut bilden, sondern nur am Allervorzüglichsten." - Johann Wolfgang von Goethe

  • das hochfrequente Geräusche zum Teil auch über die Kopfhaut wahrgenommen werden

    Genau das ist ein Punkt, an den ich bei aller Physik und Biologie auch immer wieder komme, denn ich denke, dass man gemeinhin nicht nur über die Ohren hört - auch wenn das sicher sehr individuell und wahrscheinlich kaum zu messen sein wird. Live-Musik und Lautsprechermusik und Kopfhörermusik werden ja darüber hinaus komplett unterschiedlich wahrgenommen, auch wenn es physikalisch dieselben Wellen sein mögen. Aber ich bin auch nur kompletter Laie und nehme gerne in Kauf, auf gutes Marketing anzuspringen und sicher auch eine andere Erwartung zu haben bezüglich HiRes - und deshalb vielleicht auch einfach etwas anderes höre.

    Hauptsache man hat Freude daran

    Genau!

  • Live-Musik und Lautsprechermusik und Kopfhörermusik werden ja darüber hinaus komplett unterschiedlich wahrgenommen, auch wenn es physikalisch dieselben Wellen sein mögen.

    sind es nicht - die Wellen in einem Konzertsaal kommen ja nicht nur von zwei Lautsprechern oder gar nur Kopfhörern, sind also schon bei der Entstehung ganz anders im Raum verteilt. Was am Ohr ankommt, mag irgendwie vergleichbar sein (zumindest wird das angestrebt), aber schon die Präsenz eines schönen Basses im ganzen Körper kann ja kein Kopfhörer vermitteln.

    Die englischen Stimmen ermuntern die Sinnen
    daß Alles für Freuden erwacht

  • MB hat die Problematik in Beiträgen 157ff sehr gut dargestellt.
    Vielen Dank dafür!
    :verbeugung1:
    Um es noch mal mit einfachen Worten darzustellen:
    das Nyquist-Shannon-Theorem besagt, dass eine Frequenz (ein Ton) mittels Abtastung der doppelten Frequenz wiederhergestellt werden kann.
    Wenn man eintönige Musik hört ist es also perfekt. :D
    Aber mal im Ernst: es geht darum, wie genau das Musiksignal abgetastet wird.
    Die Red Book Fraktion meint: genau genug. Ich sehe das anders.
    Bei der Audio-CD wird übrigens PCM kodiert, bei der Super Audio CD DSD – aber das nur mal so als Randnotiz.
    Es geht um die Werte bzw. den Verlauf zwischen den Abtaststellen bzw. Stützwerten. Bei einem reinen Sinussignal ist es einfach: ein Sinus eben. Bei einem Musiksignal ist es keine einfache Funktion. Wird die Abtastfrequenz erhöht, werden die Funktionen die die Verläufe zwischen den Stützstellen beschreiben einfacher und das Musiksignal wird präziser erfasst.
    Ob das relevant ist, hängt vom indivuduellen Gehör ab.

    Pau

    Die Bürger demokratischer Gesellschaften sollten Kurse für geistige Selbstverteidigung besuchen, um sich gegen Manipulation und Kontrolle wehren zu können. (Noam Chomsky)

  • Hier noch ein netter Vergleich.


    Es erklingt jeweils der "Main Title", das Hauptthema aus "Krieg der Sterne" bzw. "Star Wars".


    Zum einen aus dem Soundtrack von 1977 ("Krieg der Sterne" bzw. heute Episode IV "Eine neue Hoffnung"/"A New Hope").
    Geliefert im Format 192 kHz/24 Bit.


    Dann aus dem Soundtrack von 2015 (Erster Teil der Sequel-Trilogie: "Das Erwachen der Macht"/"The Force Awakens").
    Geliefert im Format 96 kHz/24 Bit.


     


    1977 im Format 192/24: Flächig, spitz in den Trompeten, das Ganze wie hinter einem Stoffvorhang, leicht diffus.


    2015 im Format 96/24: Knaller. Eine Aufnahme für den "ach, so gut kann das klingen"-Effekt. Räumlich mit vorne und hinten, rechts und links, mit "Platz zwischen den Tönen", mit einem Bass, der untenrum schön durchzieht.


    Also, wenn ich HiFi-Händler wäre und eine Komponente alt aussehen lassen wollte und die andere pushen, ich hätte eine Idee ... ist ja dieselbe Musik, nicht wahr ...


    (Ach ja: Das auf dem Papier bessere Format bringt hier gar nix. Eigentlich ist das Beispiel hier off topic.)


    Gruß
    MB


    :wink:

    "Den Geschmack kann man nicht am Mittelgut bilden, sondern nur am Allervorzüglichsten." - Johann Wolfgang von Goethe

  • Dieser und einige Folgebeiträge wurden aus thematischen Gründen aus "Jeden Tag ein Streichquartett" hierher verschoben. Braccio

    in der höchsten verfügbaren Auflösung gekauft, also nominell deutlich besser als CD-Qualität. Und das höre ich auf meiner Linn-Anlage auch sehr deutlich.

    Es wird ja im Internet allenthalben bestritten, dass HiRes besser klingen könne, und mit viel Theorie auch "nachgewiesen". Dennoch - ich meine auch: Man bekommt in HiRes mehr Klang. Mag sein, dass es so ist wie einige munkeln - die HiRes-Tracks stammen von anderen, höherwertigen Abmischungen. Die Abmischungen in CD-Qualität sind dafür gemacht, dass sie auch noch auf dem Ghettoblaster irgendwie klingen. Bei den HiRes-Abmischungen werden keine Kompromisse gemacht.


    Mir ist's egal, ob an der höheren Auflösung oder an einer besseren Abmischung liegt - ich genieße den Klang. - Hier übrigens auch LINN (Boxen von Audio Physic). Passt zur schottischen Orgie eines anderen Forianers.

    Ich bin jedenfalls sehr angetan.

    Freut mich sehr! Da muss ich mal schauen ... Danke für Deine Rückmeldung!


    Gruß
    MB


    :wink:

    "Den Geschmack kann man nicht am Mittelgut bilden, sondern nur am Allervorzüglichsten." - Johann Wolfgang von Goethe

  • Mal davon ab, dass sich der Vorteil von HiRes verblindet getestet mit hoher Wahrscheinlichkeit in Luft auflösen würde, ist es in einem wirtschaftlich schwierigen Markt, wie demjenigen der Klassik-Produktionein, ebenfalls sehr unwahrscheinlich, dass ein Label den Aufwand unterschiedlicher Masterings treibt. Das bezahlt ihm niemand. Schon gar nicht die Handvoll audiophiler Klassik-Liebhaber, die als noch kleinere Teilmenge Streams oder Downloads akzeptiert.


    :cincinbier:

    "it's hard to find your way through the darkness / and it's hard to know what to believe
    but if you live by your heart and value the love you find / then you have all you need"
    - H. W. M.

Jetzt mitmachen!

Du hast noch kein Benutzerkonto auf unserer Seite? Registriere dich kostenlos und nimm an unserer Community teil!